Quadrocopter Ball Juggling
Appendix: Trajectory Generation

Mark Miiller, Sergei Lupashin and Raffaello D’Andrea
July 5, 2011

The quadrocopter’s position in space, under the assumption that the angles remain small, can be
written as:

For convenience, we drop the distinction between desired and actual values. Substituting the affine
inputs

f(t)=Ast + By (2)
0(t) = Agt + By (3)
o(t) = Agt + By, (4)

into (1), we can write the racket normal’s second time derivative as a polynomial in time, which we
integrate twice. Then the quadrocopter’s accelerations along each axis are also simply polynomials in
time, which we integrate to get velocity and position.

The time is taken as ¢ = 0 at the start of the trajectory, and the impact time occurs at t = 7. The
following conditions must be met at impact, where sy is the impact position, V| is the desired racket
speed in the direction of the normal, and the desired racket orientation is given by nj :

s-(T) = sy (5)
n(T) =ny (6)
5.(T)'n(T) = V.. (7)

Introducing the following notation:

(21(8), 22(t), 25(8)) 1= 5. (t) ®)
(nfys py, mpy) i= 1y (9)
2o, = 24(0), i € {1,2,3} (10)

do, 1= #:(0), i € {1,2,3} (11)

xy, = x;(T), 1 € {1,2,3} (12)

6o :=0(0) (13)

0o := 6(0) (14)

07 :=0(T) (15)

o := ¢(0) (16)

o = ¢(0) (17)

b5 1= o(T) (18)

Axy =y, — 20, — To, T (19)

Axy =y, — To, — 0, T (20)

Axg =2y, — Ty — o, T + %gT2 (21)

AO:=0; — by — 6T (22)

A= ds — do — ¢oT. (23)

We now rewrite (5) - (7) as the following six scalar equations:

0y = arctan (nfl) (25)

nfs
¢y = arcsin(ny,) (26)
$.(T)'ny = AV. (27)

Substituting the polynomials resulting from the integration of (1), we get the following six equations:

Az — OoAzs — HoAwsT — LA0Aws = (00T + Ae) Aj..

(2%)
+ (—goAwsT?) Ag + (—15507°) As As

—Axy — poAzxsy — %GBOA%T - %A¢A$3 = (%QBOTZL + 415 A¢) Af- (29)
+ (—ggArsT?) Ag + (—1o501°) ArAs

— (iolT — 200Ax3 — %90A$3T + 4A.T1) ng — (i‘oZT + 2¢0A1‘3 + %QAQAng + 4Al‘2) Tfyeee
— (#0,T — gT? — 2Az3) ny, + AVT = (5 Az3T3ny,) Ag + (— g5 Az3T>ny,) Agp... (30)
+ (3007 + 500T* + H AT) ng, + (~200T = KdoT* = HAGT?) ny, + (3T%) ny,) Ap..

1
B == <2Az3 - —AfT3) (31)
1
By = =3 (me — §A9T3) (32)
1
By = 7 (2A¢ - —A¢T3) (33)

By (31)-(33) we can see that By, By and By, are affine functions in Ay, Ag and Ay, respectively. This
means that if we select a set of solutions based on “small” values for A¢, Ag and Ay, it will also imply
small values for By, By and Bg, respectively.

For brevity we introduce the coefficients b;, ¢;, d;, f; and g;. By substitution, we can rewrite (28) -
(33) as three equations in three unknowns:

0=by+ blAf + boAg + bgAng (34)
0= CQ+ClAf+CQA¢+C3AfA¢ (35)
0=do+diAf + dyAg + ds Ay (36)
where
1. 1
bo = Aacl — 90A$3 — 590A$3T — EAngO (37)
1
by : 0T + — A0
vi= (g + 59) (39)
b BRGNP (39)
2 = 90 Z3
1

by = ———T° 4

° 1080 (40)

o = —Azo — doAxs — %QBOA:CBT - %A:chgb
1. 1
= =¢oT+—=A¢ | T3
“ (36% T ¢)

1
co = (—%Am) T3

L 6

%= ~To80

1.
do =V, T - (i‘olT — 2ASC390 — gooAl'gT + 4A$1) nf

1.
— (i‘OQT + 2Ax3¢0 + §¢0A$3T + 4Axo

— (&0, T + 2Az3 — gT?) ny,
1 1. 1
dy = =007 + —0,T* + —AOT>
! (6 o RN g e
1 1. 1
——poT? — —poT* — —ApT?
+< 6¢0 18% 50 ¢ >nf2

1
(57

1
dy = (aAngg) ng,

1
ds = <%Az3T3> ng,

Simplifying, we get two equations in two unknowns:

0=-¢eg+e1dp+ €2A¢ + €3A9A¢ + 64143
0= fo+ f1Ag + faAe + faAg Ay + [1A3

where

eo = bod1 — bidg
e1 = —bidy + bady + bzdy

€y = —b1d3
€3 = 7b3d3
€4 = 7b3d2

fo =cody — c1do
fi = —cids + cady + c3do

f2 = —cidy
fz = —c3dy
fa = —cads

which can be further reduced to one equation in one unknown:

0=go+ g1 A0* + g2 A3 + g3 A5 + g4 Ap

(46)

with

g1 = eseqfa — ezeqfs (62)
g2 = ezezfa —ere3fz — ezeqf1 + 2e1e4fs — ezeqf3 (63)
gs = e1e1fa — ezesfo — ere3f1 + eoesfs — ereafz + 2ezes fo — eaeaf1 — 2epeq fa (64)
ga = ezeafo + epes fi — ereafi — 2epe1 f4 + eoea f3 — 2e2e3 fo (65)
go = faegeo + freoea — foezen (66)
This quartic equation can be solved analytically. For an example of a C++ implementation, see

http://marcusbannerman.co.uk/index.php/component/content/article/42-articles /87-quartic-and-cubic-
root-finder-in-c.html.

