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I. MINIMUM MAXIMUM ACCELERATION TRAJECTORY

A. Maneuver Structure
In order to find a maneuver that minimizes the maximum acceleration of a one-dimensional system with constrained jerk,
we have to solve the optimizing problem

minimize max (|a|)

subject to ṡ = f(s, k),

s(t0) = s0,

s(tf ) = sf ,

k ∈ [−kmax, kmax] ∀t ∈ [t0, tf ],

(1)

with the system dynamics

ṡ = f(s, k) = (ṗ, v̇, ȧ) = (v, a, k). (2)

We use Pontryagin’s minimum principle to determine the structure of the optimal solution. The maximum acceleration
magnitude within the interval [t0, tf ] can be written as

max (|a|) = lim
n→∞

2n

√
1

tf − t0

∫ tf

t0

a2ndt, (3)

where n is a positive integer. Since the function 2n
√
1/(tf − t0)(.) is strictly increasing, we can minimize its argument

instead of minimizing the function value. Therefore, we define the cost function to be

J =

∫ tf

t0

g(s, k)dt =

∫ tf

t0

a2ndt ⇒ g(s, k) = a2n, (4)

where we later increase n towards infinity. The Hamiltonian is then given by

H(s, k,p) = g(s, k) + pT f(s, k) = a2n + p1v + p2a+ p3k, (5)

where p denotes the costates. We can see that the Hamiltonian is linear in k, meaning that the optimal control input jumps
between ±kmax if p3 switches its sign (the optimal solution minimizes the Hamiltonian). Additionally, for each switch a
singular arc might occur, meaning that p3 stays at zero for a nontrivial interval of time. Within these intervals, the input k
is determined by the condition that p3 and all its time-derivatives stay at zero. The adjoint equation

ṗ = −∇sH(s, k,p) (6)

yields for our problem:

ṗ1 = 0 ⇒ p1 = c1

ṗ2 = −p1 ⇒ p2 = c2 − c1t

ṗ3 = −p2 − 2na2n−1

(7)

By solving ṗ3 = 0 for a, we get the acceleration within a singular arc:

a(t) = ±c1
(
± t− c2/c1

2n

) 1
2n−1

. (8)
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For n > 1, the imaginary part of (8) only vanishes for positive values within the brackets, we therefore factor out ±c1 such
that the bracket is positive. To find the acceleration within a singular interval of a maneuver that minimizes max (|a|), we
increase n towards infinity, yielding

lim
n→∞

±c1
(
± t− c2/c1

2n

) 1
2n−1

= ±c1. (9)

Hence, the acceleration is constant if we are in a singular arc, and consequently the jerk stays at zero. Furthermore, knowing
that the acceleration is constant, it can be verified that more than two switches always increase the required maximum
acceleration.
Summing up, the optimal jerk trajectory switches twice between the jerk boundaries, and at each switch it might stay at
zero for a nontrivial interval of time; the maneuver has at most five intervals:
• [t0, t1): k = ±kmax,
• [t1, t2): k = 0 and a = ±amax,
• [t2, t3): k = ∓kmax,
• [t3, t4): k = 0 and a = ∓amax,
• [t4, tf ]: k = ±kmax,

with amax = c1.

B. Maneuver Parameters

Each of the two singular intervals might vanish, hence we do not know the number of intervals beforehand. Furthermore,
the sign of the jerk within the first interval is not known, either. We therefore compute the solutions for all possible cases,
and pick the right solution at the end. The right solution is the one with the smallest amax among all solutions that make
physically sense.

1) Case t2 > t1 and t4 > t3: In order to find the parameters of such a maneuver, we have to find the five unknowns

t1, t2, t3, t4, amax, (10)

satisfying the five conditions

p(tf ) = pf , (11)

v(tf ) = vf , (12)

a(tf ) = af , (13)

a(t1) = amax, (14)

a(t3) = −amax. (15)

By inspecting the structure of the acceleration trajectory, the conditions (13)-(15) can be used to express the unknowns t1,
t3, and t4 as linear functions of the two unknowns amax and t2:

t1 = t0 +
amax−a0
kmax

,

t3 = t2 + 2amaxkmax
,

t4 = tf − amax+af
kmax

.

(16)
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In order to obtain the closed-form solutions of the maneuver parameters, we integrate the different maneuver intervals
analytically, and subsequently substitute the unknowns t1, t3, and t4 by inserting (16). We get

p(tf ) =
−a03−24amax3+af

3−3a02(amax+kmaxT )+3amax
2(af+7kmaxT−8kmaxT2)+3a0amax(7amax−2kmaxT+4kmaxT2)

6kmax2

+
3amax(af 2−kmax2(T 2−4TT2+2T2

2))+6kmax
2(p0+Tv0)

6kmax2 , (17)

v(tf ) =
−a02−2a0amax+8amax

2+af
2+2amax(af−kmaxT+2kmaxT2)+2kmaxv0

2kmax
, (18)

a(tf ) =af , (19)

where the notations T2 = t2 − t1 and T = tf − t0 were used. The resulting final velocity (18) is linear in T2, hence we can
insert (18) into condition (12) and subsequently solve for T2:

T2 =
a0

2+2a0amax−8amax2−2amaxaf−af 2+2amaxkmaxT−2kmaxv0+2kmaxvf
4amaxkmax

. (20)

By inserting (20) into (17), the final position condition (11) results in a cubic equation for the remaining unknown amax:

c3amax
3 + c2amax

2 + c1amax + c0 = 0, (21)

with

c3 = −a0−af+kmaxT
2kmax2 ,

c2 =
(a0−af+kmaxT )2

4kmax2 ,

c1 =
a0

3−af 3−3af 2kmaxT+3a0
2(af−kmaxT )−3a0(af 2+2kmax(v0−vf ))+6afkmax(vf−v0)+6kmax

2(2p0−2pf+T (v0+vf ))

12kmax2 ,

c0 = − (a02−af 2+2kmax(vf−v0))
2

16kmax2 .

(22)

This equation can be solved using Cardano’s method for general cubic equations, yielding three possible solutions for amax.
Afterwards, we can use (16) and (20) to obtain the other four unknowns.

2) Case t2 = t1 and t4 > t3: In order to find the maneuver parameters for this case, we have to find the four unknowns

t1, t3, t4, amax, (23)

satisfying the four conditions

p(tf ) = pf , (24)

v(tf ) = vf , (25)

a(tf ) = af , (26)

a(t3) = −amax. (27)

Similar to the derivations above, we can use the conditions (26) and (27) to express t1 and t4 as linear functions of t3
and amax:

t1 = 1
2 t0 +

1
2 t3 −

amax+a0
2kmax

,

t4 = tf − amax+af
kmax

.
(28)
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Again, we integrate the system over all intervals and insert the substitution (28). We get for the final state:

p(tf ) =
−a03+af

3+6kmax
2p0+3amax

2(af−kmaxT )−3a02(amax+kmaxT )+6kmax
3TT3

2−6kmax3T3
3

6kmax2

+
3amax(af 2−kmax2(T 2−2T3

2))−3a0(amax2+2amaxkmaxT−2kmax2T3
2)+6kmax

2Tv0

6kmax2 , (29)

v(tf ) =
−a02−2a0amax+af 2+2amax(af−kmaxT )+2kmax

2T3
2+2kmaxv0

2kmax
, (30)

a(tf ) =af , (31)

with T3 = t3 − t2. In this case, the final velocity (30) is quadratic with respect to T3, and we get two solutions when we
solve condition (25):

T3 = ±
√
a02+2a0amax−2amaxaf−af 2+2amaxkmaxT−2kmaxv0+2kmaxvf√

2kmax
. (32)

Since T3 must be positive for a valid trajectory, we insert the positive solution of (32) into (29), and the final position
condition (24) yields a radical equation:

c2amax
2 + c1amax + c0 +

√
d3amax3 + d2amax2 + d1amax + d0 = 0, (33)

with

c2 =
a0−af+kmaxT

2kmax2 ,

c1 =
2a0

2−2a0(af−kmaxT )+kmax(−2afT+kmaxT
2−2v0+2vf)

2kmax2 ,

c0 =
2a0

3+af
3−3af 2kmaxT−3a0(af 2+2kmax(v0−vf ))+6kmax

2(p0−pf+Tvf )
6kmax2 ,

d3 =
(a0−af+kmaxT )3

kmax4 ,

d2 =
3(a0−af+kmaxT )2(a02−af 2+2kmax(−v0+vf ))

2kmax4 ,

d1 =
3(a0−af+kmaxT )(a02−af 2+2kmax(−v0+vf ))

2

4kmax4 ,

d0 =
(a02−af 2+2kmax(−v0+vf ))

3

8kmax4 .

(34)

Equation (33) can be converted to a quartic equation

c22amax
4 + (2c1c2 + d3)amax

3 + (c21 + 2c0c2 + d2)amax
2 + (2c0c1 + d1)amax + c20 + d0 = 0, (35)

which can be solved for a general case using Ferrari’s method. Four possible solutions for amax exist.

3) Case t2 > t1 and t4 = t3: In order to find the parameters of such a maneuver, we have to find the four unknowns

t1, t2, t3, amax, (36)

satisfying the four conditions

p(tf ) = pf , (37)

v(tf ) = vf , (38)

a(tf ) = af , (39)

a(t1) = amax. (40)
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Again, we can use the conditions (39) and (40) to express t1 and t2 as linear functions of t3 and amax:

t1 = t0 +
amax−a0
kmax

,

t2 = 2t3 − tf + af−amax
kmax

.
(41)

Integrating the system over all intervals, and subsequently applying substitution (41) yields

p(tf ) =
−a03+af

3+6kmax
2p0−3a0amax(amax−2kmaxT )+3a0

2(amax−kmaxT )+3amax
2(af−kmaxT )

6kmax2

+
amax(−3af 2+3kmax

2(T 2+2T3
2))+6kmax

2Tv0−6afkmax2T3
2−6kmax3T3

3

6kmax2 , (42)

v(tf ) =
−a02+2a0amax−2amaxaf+af 2+2amaxkmaxT−2kmax2T3

2+2kmaxv0
2kmax

, (43)

a(tf ) =af . (44)

Again, the final velocity (43) is quadratic in T3, and solving the final velocity condition (38) for T3 yields:

T3 = ±
√
−a02+2a0amax−2amaxaf+af 2+2amaxkmaxT+2kmaxv0−2kmaxvf√

2kmax
. (45)

We insert the positive solution of (45) into (42), and the final position condition (37) yields a radical equation:

c2amax
2 + c1amax + c0 +

√
d3amax3 + d2amax2 + d1amax + d0 = 0, (46)

with

c2 =
a0−af+kmaxT

2kmax2 ,

c1 =
2af

2−2afkmaxT−2a0(af−kmaxT )+kmax(kmaxT 2+2v0−2vf)
2kmax2 ,

c0 =
−a03−2af 3+3a0

2(af−kmaxT )+6kmax
2(p0−pf+Tv0)+6afkmax(−v0+vf )

6kmax2 ,

d3 =
(a0−af+kmaxT )3

kmax4 ,

d2 =
3(a0−af+kmaxT )2(−a02+af

2+2kmax(v0−vf ))
2kmax4 ,

d1 =
3(a0−af+kmaxT )(a02−af 2+2kmax(−v0+vf ))

2

4kmax4 ,

d0 =
(−a02+af

2+2kmax(v0−vf ))
3

8kmax4 .

(47)

Finally, we convert (46) to a quartic equation

c22amax
4 + (2c1c2 + d3)amax

3 + (c21 + 2c0c2 + d2)amax
2 + (2c0c1 + d1)amax + c20 + d0 = 0, (48)

which can be solved for general cases. Again, four possible solutions for amax result.

4) Case t2 = t1 and t4 = t3: In this case, we have two unknowns (t1 and t3) and three final state conditions; we cannot
find a solution in general, meaning that this case only occurs as limit case of one of the other solutions above.

5) Negative Initial Jerk: All derivations above were done for positive jerk in the first interval. For negative initial jerk, we
substitute kmax = −kmax and amax = −amax and apply the same formulas.
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II. THROW TRAJECTORY

A. First Interval, t0 < t ≤ t1
Within the first interval of the throw, the acceleration is constant and given by

r̈net(t) = ath1 sin (φ0),

z̈net(t) = ath1 cos (φ0)− g,
(49)

where φ0 = φ(t0) is the steady-state roll angle. The velocity and position trajectories yield:

ṙnet(t) = ath1 sin (φ0)t,

rnet(t) = r0 +
1
2ath1 sin (φ0)t

2,

żnet(t) = (ath1 cos (φ0)− g)t,

znet(t) = z0 +
1
2 (ath1 cos (φ0)− g)t

2,

(50)

where r0 = rnet(t0) denotes the initial net radius, and z0 = znet(t0) the initial net reference height.

B. Second Interval, t1 < t ≤ t2
Within the second interval, the vehicles turn outwards and the acceleration trajectories are

r̈net(t) = ath2 sin (φ0 + φ̇th2(t− t1)),

z̈net(t) = ath2 cos (φ0 + φ̇th2(t− t1))− g.
(51)

By integration of the acceleration trajectories, we get

ṙnet(t) = ṙnet(t1) +
ath2(cos (φ0)−cos (φ0+φ̇th2(t−t1)))

φ̇th2
,

rnet(t) = rnet(t1) + ṙnet(t1)(t− t1) + ath2(sin (φ0)−sin (φ0+φ̇th2(t−t1))+φ̇th2(t−t1) cos (φ0))

φ̇2
th2

,

żnet(t) = żnet(t1)− g(t− t1)− ath2(sin (φ0)−sin (φ0+φ̇th2(t−t1)))
φ̇th2

,

znet(t) = znet(t1) + żnet(t1)(t− t1)− 1
2g(t− t1)

2 + ath2(cos (φ0)−cos (φ0+φ̇th2(t−t1))−φ̇th2(t−t1) sin (φ0))

φ̇2
th2

.

(52)

The parameters φ̇th2 and t2 are determined by the two conditions

rnet(t2) = lnet,

φ(t2) = π/2.
(53)

We can insert (52) into (53) and solve for the unknowns. Two solutions exist; we pick the one yielding a positive roll rate:

φ̇th2 =
−2ṙnet(t1)φ0+ṙnet(t1)π+

√
(ṙnet(t1)π−2ṙnet(t1)φ0)2+8ath2(lnet−rnet(t1))((π−2φ0) cos (φ0)+2 sin (φ0)−2)

4(lnet−rnet(t1)) ,

t2 = π/2−φ0

φ̇th2
.

(54)
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C. Third Interval, t2 < t ≤ t3
The trajectories during the stretching interval follow the trajectories of a linear spring-mass system, hence the accelerations
are given by

r̈net(t) = −astretch sin (λn(t− t2) + τstretch),

z̈net(t) = −g,
(55)

where λn is the natural frequency of the system. The velocity and position trajectories yield

ṙnet(t) =
astretch
λn

cos (λn(t− t2) + τstretch),

rnet(t) =
ath3
λn2 + astretch

λn2 sin (λn(t− t2) + τstretch),

żnet(t) = żnet(t2)− g(t− t2),

znet(t) = znet(t2) + żnet(t2)(t− t2)− 1
2g(t− t2)

2.

(56)

We can insert (56) into the three conditions

rnet(t2
+) = rnet(t2

−) = lnet,

ṙnet(t2
+) = ṙnet(t2

−),

rnet(t3
−) = rnet(t3

+) = lnet,

(57)

and solve for the three unknowns astretch, τstretch, and t3. Since multiple solutions exist, we pick the one with t3 > t2
and τstretch > 0:

astretch = −
√
ṙnet(t2)2λn

2 +
(
ath3 − λn2lnet

)2
,

τstretch = arccos

(
− ṙnet(t2)λn√

ṙnet(t2)2λn2+(ath3−λn2lnet)
2

)
,

t3 = t2 +
1
λn

(
τstretch − arcsin

(
ath3−λn2lnet√

ṙnet(t2)2λn2+(ath3−λn2lnet)
2

))
.

(58)

D. Fourth Interval, t3 < t ≤ tf
In the fourth interval, the vehicles turn back and decelerate. The acceleration trajectories are given by

r̈net(t) = ath4 sin (π/2 + φ̇th2(t− t3)),

z̈net(t) = ath4 cos (π/2 + φ̇th2(t− t3))− g.
(59)

The position and velocity trajectories yield

ṙnet(t) = ṙnet(t3) +
ath4 sin (φ̇th4(t−t3))

φ̇th4
,

rnet(t) = lnet + ṙnet(t3)(t− t3) + ath4(1−cos (φ̇th4(t−t3)))
φ̇2
th4

,

żnet(t) = żnet(t3)− g(t− t3)− ath4(1−cos (φ̇th4(t−t3)))
φ̇th4

,

znet(t) = znet(t3) + żnet(t3)(t− t3)− 1
2g(t− t3)

2 + ath4(sin (φ̇th4(t−t3))−φ̇th4(t−t3))
φ̇2
th4

.

(60)

The three final conditions to be satisfied are

rnet(tf ) = rf ,

ṙnet(tf ) = 0,

φ(tf ) = φf .

(61)
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By inserting (60) into (61), and solving for the three unknowns ath4, φ̇th4, and tf , we get

ath4 =
ṙnet(t3)

2 sec (φtf )(π−2φtf−2 sec (φtf )+2 tan (φtf ))

2(lnet−rf ) ,

φ̇th4 =
ṙnet(t3)(π−2φtf−2 sec (φtf )+2 tan (φtf ))

2(lnet−rf ) ,

tf = t3 +
π
2−φtf
−φ̇th4

.

(62)
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